
PROGRAM PROTECTION THROUGH REDUCTION,
HARDENING, AND DIVERSIFICATION

SALES
888-695-2668

GTIRB
GrammaTech Intermediate Representation for Binaries
The GrammaTech Intermediate Representation for Binaries (GTIRB) is a machine code analysis and rewriting data structure. It is intended to facilitate
the communication of binary IR between programs performing binary disassembly, analysis, transformation, and pretty printing. GTIRB is modeled on
LLVM-IR, and seeks to serve a similar functionality of encouraging communication and interoperability between tools.

• https://github.com/grammatech/gtirb
• https://grammatech.github.io/gtirb/
• https://arxiv.org/abs/1907.02859

Binary Transformation
Monitoring and Hardening

Runtime Application Self-Protection

Design
Development
Pre-Deployment
Deployment
Sustainment

GTIRB
DDisasm
To-static

Reduce
Stack-stamp
Diversify

Under ONR’s TPCP program GrammaTech has developed revolutionary
tools for automated software protection through reduction, hardening, and
diversification. In addition to these mature commercial tools for end-users
GrammaTech has released the supporting infrastructure as open-source
software. By sharing this technology with the research community we hope
to inspire radical change in capabilities for both developers and end users to
modify and protect new, legacy, and third-party software.

FOR MORE INFORMATION
www.grammatech.com

EMAIL
sales@grammatech.com

1 souffle https://github.com/souffle-lang/souffle
2 GTIRB pretty printer https://github.com/grammatech/gtirb-pprinter

GrammaTech Intermediate Representation for Binaries.
A fast and accurate reassemblable disassembler.
Converts a dynamically linked binary executable to one that is
statically linked.
Removes specified features from a binary.
Applies ‘stack stamping’ ROP protections to a binary.
Evolves diverse binary implementations with unique signatures and
attack surfaces.

DDisasm
A fast and accurate reassemblable disassembler

DDisasm is fast disassembler which is accurate enough for the resulting assembly code to be reassembled. The disassembler is implemented using
the datalog (souffle1) declarative logic programming language to compile disassembly rules and heuristics. The disassembler first parses binary
file information and decodes a superset of possible instructions to create an
initial set of datalog facts. These facts are analyzed to identify code location,
symbolization, and function boundaries. The results of this analysis, a
refined set of datalog facts, are then translated to the GTIRB intermediate
representation for binary analysis and reverse engineering. The GTIRB
pretty printer2 may then be used to pretty print the GTIRB to reassemblable
assembly code.

• https://github.com/GrammaTech/ddisasm
• https://arxiv.org/abs/1906.03969

BINARY ANALYSIS
AND REWRITING

SALES
888-695-2668

Reduce
Transform to remove specified features from a binary

Reduce is a software transformation that takes a COTS binary executable and a set of features and
rewrites the executable to remove all code which is not required by the specified features. It uses a
combination of dynamic tracing and static analysis to collect a mapping from features to portions of
the binary and thus identify the code and data blocks that are to be removed. It then removes these
blocks, rerouting control flow as needed, and compacts the resulting binary image. This can be useful
when software includes undesirable or unused features, especially when those features have a negative
impact on software performance or security.

Binary Transformation
Monitoring and Hardening

Runtime Application Self-Protection

To-static is a binary rewriting software transformation that takes a COTS
binary executable along with the dynamic libraries it would load at runtime
and consolidates them all into a single statically linked binary executable. This
process is useful in cases where the equivalent statically linked executable
cannot be built from source: for example, because the original source code
or build system are unavailable, or are available but cannot be modified to
accommodate static linking. The to-static transform confers all the benefits of
static linking—simplified distribution, reduced runtime requirements, streamlined
cross-library function calls—while also ensuring that any subsequent binary
transformations (e.g., control flow integrity (CFI), hardening, debloating,
optimization) will automatically apply to library code as well as to the main
executable code.

FOR MORE INFORMATION
www.grammatech.com

EMAIL
sales@grammatech.com

Stack-stamp
Transform to apply ‘stack stamping’ ROP protections to a binary

Stack stamping is a technique to help mitigate ROP style attacks. This is done
by ‘stamping’ the return address on the stack, thus encrypting it. Before it is
popped off the stack and used, it is decrypted by ‘unstamping’ it. This can be
an efficient protection, as no registers are needed, and while flags are affected,
they are only affected at function entry and exits where they do not need to
be preserved. An attacker who wishes to hijack control flow by overwriting
the return address now has a more difficult task: not only must they find an
opportunity to write to the stack, but they must write a value that decodes to
their replacement address instead of simply writing the address itself.

To-static
Transform to convert a dynamically linked binary executable to
one that is statically linked

Design
Development
Pre-Deployment
Deployment
Sustainment

Diversify
Evolve diverse binary implementations with unique signatures and attack surfaces
Diversify is a source-to-source software transformation which takes in an original program and a test
suite and produces a set of program variants that retain functionality on the test suite while achieving
binary diversity. Binary diversity is measured by compiling the software variants to binary executables
and then comparing the results against the compiled binary of the original program. Diversity is achieved
by repeatedly selecting a mutation from a large set of candidates and applying it to the source code of
the original program. Mutations range from simple (e.g., deletion) to complex (e.g., structured software
refactorings such as variable or function inlining or extraction). Repeated application of mutations in
a search-based algorithm that maximizes diversity can evolve a population of functionally equivalent
variants with significant differences from the original binary and from one another.

