
US010705814B2

(12) United States Patent
Schulte et al .

(10) Patent No .: US 10,705,814 B2
(45) Date of Patent : Jul . 7 , 2020

9,875,087 B2
2003/0065976 A1 *

1/2018 Scholz et al .
4/2003 Bennett

(54) SYSTEMS AND / OR METHODS FOR
GENERATING REASSEMBLABLE
DISASSEMBLIES OF BINARIES USING
DECLARATIVE LOGIC 2016/0147517 Al * 5/2016 Vicovan

G06F 8/53
714/35

GO6F 8/53
717/140

G06F 21/566
G06F 8/427 (71) Applicant : GrammaTech , Inc. , Ithaca , NY (US) 2016/0212159 A1 * 7/2016 Gupta

2016/0299748 A1 * 10/2016 Scholz
(Continued) (72) Inventors : Eric Michael Schulte , Pittsburgh , PA

(US) ; Antonio Enrique Flores
Montoya , Ithaca , NY (US) OTHER PUBLICATIONS

(73) Assignee : GRAMMATECH , INC . , Ithaca , NY
(US)

David Brumley et al . , “ Alias Analysis for Assembly . ” Technical
Report CMU - CS - 06-180 , Carnegie Mellon University School of
Computer Science , Dec. 15 , 2006 , 26 pages .

(Continued) (*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 29 days .

(21) Appl . No .: 16 / 205,523
Primary Examiner Wei Y Zhen
Assistant Examiner Amir Soltanzadeh
(74) Attorney , Agent , or Firm - Nixon & Vanderhye PC (22) Filed : Nov. 30 , 2018

(65) Prior Publication Data (57) ABSTRACT
US 2020/0174765 A1 Jun . 4 , 2020

(51) Int . Ci .
G06F 8/53 (2018.01)
G06F 8/30 (2018.01)

(52) U.S. CI .
??? G06F 8/53 (2013.01) ; G06F 8/311

(2013.01)
(58) Field of Classification Search

CPC G06F 8/53 ; GO6F 8/311
See application file for complete search history .

Certain example embodiments relate to techniques for gen
erating reassemblable disassemblies of binaries using
declarative logic . A declarative logic programming language
(e.g. , Datalog) is used to compile reverse engineering ,
binary analysis , and disassembly rules into a format appli
cable to an executable program , yielding disassembly of that
program . Datalog , for example , can be used as a query
language for deductive databases , to facilitate this approach .
Certain example embodiments thus involve (1) preparation
of an executable for Datalog analysis , (2) inference rules and
the application of Datalog for program analysis , including
the application of Datalog to the domain of binary reverse
engineering and analysis , and (3) the collection of assembly
code from the results of the Datalog analysis . These rules
can include both “ hard rules ” and “ soft rules ” or heuristics ,
even though standard Datalog does not support the latter .

(56) References Cited

U.S. PATENT DOCUMENTS

8,407,675 B1 * 3/2013 Clark G06F 8/53
717/131

GOOF 8/75
717/133

8,930,916 B1 * 1/2015 Soeder
20 Claims , 4 Drawing Sheets

104 Executable Program

102 Disassembler Program

108
Unpacker -112

110 Initial
Fact DB Decoder

114
Analysis Engine

-116 118 Instruction
Collection Module

Enhanced
Fact DB

106 Assembly Output

US 10,705,814 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2017/0116108 A1 *
2018/0225096 A1 *

4/2017 Miskelly
8/2018 Mishra

G06F 11/3624
G06F 8/30

OTHER PUBLICATIONS

Wikipedia — Decompiler , retrieved Nov. 30 , 2018 , 7 pages . https : //
en.wikipedia.org/wiki/Decompiler .
Wikipedia -Disassembler , retrieved Nov. 30 , 2018 , 3 pages . https : //
en.wikipedia.org/wiki/Disassembler .
“ What Exactly is Binary Disassembly and What it Produces ” ,
Reverse Engineering , retrieved Nov. 30 , 2018 , 11 pages . https : //
reverseengineering.stackexchange.com/questions/18276/what-exactly
is - binary - disassembly - and - what - it - produces .
" Why there are not any disassemblers that can generate re
assemblable ASM code ” , Reverse Engineering , retrieved Nov. 30 ,
2018 , 13 pages . https://reverseengineering.stackexchange.com/
questions / 3800 / why - there - are - not - any - disassemblers - that - can - generate
reassemblable - asm - code .
“ Logic Defined Static Analysis ” , retrieved Nov. 30 , 2018 , 1 page .
https://souffle-lang.github.io/ .
GTIRB GrammaTech Intermediate Representation for Binaries ,
retrieved Nov. 30 , 2018 , 5 pages . https://grammatech.github.io/
gtirb /

John Whaley et al . , “ Using Datalog with Binary Decision Diagrams
for Program Analysis . ” Asian Symposium on Programming Lan
guages and Systems . Springer , Berlin , Heidelberg , 2005 , 22 pages .
Martin Bravenboer et al . , “ Strictly Declarative Specification of
Sophisticated Points - to Analyses . ” ACM SIGPLAN Notices 44.10 ,
Oct. 25-29 , 2009 , 243-262 .
Wikipedia — Datalog , retrieved Nov. 30 , 2018 , 7 pages . https : // en .
wikipedia.org/wiki/Datalog .
Wikipedia Declarative Programming , retrieved Nov. 30 , 2018 , 4
pages . https://en.wikipedia.org/wiki/Declarative_programming . * cited by examiner

U.S. Patent Jul . 7 , 2020 Sheet 1 of 4 US 10,705,814 B2

104
Executable Program

Disassembler Program -102

108
Unpacker 112

110
Initial

Fact DB Decoder

114
Analysis Engine

116
118 Instruction

Collection Module
Enhanced
Fact DB

-106 Assembly Output

Fig . 1

U.S. Patent

108

Unpacker
114

118

110

Analysis Engine

Instruction Collection Module

Decoder

Jul . 7 , 2020

106

EXE

Assembly

Initial Fact DB

Enhanced Fact DB

Sheet 2 of 4

104

112

116

Fig . 2

US 10,705,814 B2

U.S. Patent Jul . 7 , 2020 Sheet 3 of 4 US 10,705,814 B2

-302
Generate a superset of real code blocks

304
Detect overlapping code blocks

306 Assign points to overlapping code blocks

-308 Discard overlapping code block
with fewer points

Fig . 3

404

Fig . 4

U.S. Patent

possible_target
traverse_code : stage 1

-406

402

Code Inference

410

408

traverse_code : stage 2

possible_target subset

414

Symbolization

Jul . 7 , 2020

To Fig.3 for overlap detection / handling

412

116

416 418

def_use analysis module value analysis module data access analysis module pointer reattribution module

code_in_block facts block facts code facts

Enhanced Fact DB

420 422

Sheet 4 of 4

424

Function Boundary Identification

426

First Phase Function ID

428

Second Phase Function ID

US 10,705,814 B2

15

US 10,705,814 B2
2

SYSTEMS AND / OR METHODS FOR functionality of the assembler instead , e.g. , as the same
GENERATING REASSEMBLABLE sequence of bytes may disassemble to one sequence of

DISASSEMBLIES OF BINARIES USING instructions when starting disassembly from the first byte , or
DECLARATIVE LOGIC may disassemble to a second unrelated sequence of instruc

5 tions when starting disassembly from the second byte . This
TECHNICAL FIELD is exacerbated by that fact that , as those skilled in the art

know , it is difficult to determine the offsets at which instruc
Certain example embodiments described herein relate to tions start . As another example , optimizations run on the

techniques for use with computer programming languages . assembly code by the assembler that are reflected in the More particularly , certain example embodiments relate to 10 corresponding machine code may not be translated back into techniques for generating reassemblable disassemblies of the “ un - optimized " original assembly code . Data interpre binaries using declarative logic . tations issues can also arise . Consider four opcodes , with
BACKGROUND AND SUMMARY instruction a being 0101 , instruction b being 0011 , instruc

tion c being 01010011 , and instruction d being 00110101 .
Computer programs typically are written in high - level The sequence 0101001100110101 thus could be interpreted

programming languages . High - level programming language as abba , cd , cab , etc.
code typically is architecture independent . Compilation gen Generally speaking , and as can be appreciated from the
erally involves transforming the high - level architecture examples above and the experience of those skilled in the
independent code into low - level architecture - specific code , 20 art , the generation of a reassemblable disassembly is com
which maintains the original meaning . For example , a plicated for several reasons . First , assembly and compilation
computer program may be written in C and transformed into processes are lossy . At the machine language level , there are
an x86 assembly language . Although somewhat less intui no variable function names , and variable type information
tive than most high - level programming languages , compil can be determined only by how the data is used rather than
ers oftentimes will generate human - readable and human- 25 explicit type declarations . For instance , a transfer of (for
understandable ASCII text as output . Assembly language example) 32 - bits of data could involve a 32 - bit integer , a
thus is sometimes called symbolic machine code . 32 - bit floating point value , a 32 - bit pointer , etc. The fact that Assembly language code generally will be transformed a value could be a memory address or a symbol (value) can into a sequence of binary values , or object code , that
conforms to the instruction set specification of a target 30 semblable disassembly , as it can be unclear whether a

be particularly problematic in terms of generating a reas
central processing unit (CPU) via an assembler . In other
words , an assembler will receive assembly language code as sequence is pointing at a symbol (value) or a pointer to a

completely different symbol (value) . input and generate machine language code executable by a Second , assembly and compilation processes are many CPU . Machine language / object code is not encoded in ASCII format and thus is neither human - readable nor 35 to - many operations . A source program can be translated to
human - understandable . assembly language in many ways , and machine language
An assembler program creates object code by , among can be translated back to source in many different ways .

other things , translating combinations of mnemonics and Indeed , compilers and assemblers can be very language ,
syntax for operations and addressing modes into their library , architecture , and / or otherwise specific , so (for
numerical equivalents . This representation typically 40 example) disassembling machine code for equivalent pro
includes an operation code (opcode) , as well as other control grams produced using different assemblers and / or compilers
bits and data . The assembler also calculates constant expres can yield very different results .
sions and resolves symbolic names for memory locations Because the emphasis generally is on human understand
and other entities , and oftentimes also will perform other ability with respect to the disassembly , and because equiva
tasks such as , for example , optimizations , etc. 45 lent functionality may be reproduced in at least some
Many programs are distributed only in machine code instances , the inability to create an exact replica of a

form . However , it sometimes might be desirable to disas disassembly and / or an exact replica of machine code from a
semble a binary or sequence of object code . For example , it disassembly is / are not necessarily problematic in all
may be desirable to disassemble a binary or sequence of instances . Some ambiguity and incorrectness might well be
object code to test for vulnerabilities or potential exploits , to 50 tolerable in many scenarios . Indeed , inaccuracies can be
replay applications for forensic analysis or the like , for corrected manually in some instances , and simply “ toler
reverse engineering purposes , etc. ated ” or “ accepted ” in others . Thus , the fact that there is a

A disassembler is a computer program that translates strong relationship between assembly language and machine
machine language into assembly language and , thus , is at language oftentimes is seen as sufficient , even though there
least some respects the “ inverse ” of an assembler . The 55 is not a one - to - one mapping between assembly language and
output of a disassembler typically is formatted for human machine language .
readability rather than suitability for input to an assembler Unfortunately , however , these problems can become
(e.g. , and thus typically is not suitable for use in (re-) exacerbated and unacceptable if the disassembled code
generation of machine language code) . needs to be accurate for some reason . For instance , ambi

Those skilled in the art know that it can be difficult , and 60 guities , inaccuracies , and the like , may be unacceptable in
sometimes impossible , to generate completely accurate dis applications geared towards identifying security vulnerabili
assemblies . Similarly , those skilled in the art know that it can ties , assessing mission - critical operations , etc. The same
be difficult , and sometimes impossible , to generate reassem may hold true where disassembled code needs to be modi
blable disassemblies . fied prior to reassembly .

For example , it can be difficult to know which of plural 65 Thus , it will be appreciated that it would be desirable to
semantic equivalents is / are used when disassembling address the above - described and / or other issues . For
machine code . Consider , for example , typical many - to - one instance , it will be appreciated that it would be desirable to

US 10,705,814 B2
3 4

generate more accurate disassemblies and / or reassemblable According to certain example embodiments , the valid
disassemblies . Certain example embodiments help in these assembler code may be assembleable into a valid executable .
and / or other regards . According to certain example embodiments , one or more

In certain example embodiments , a method of disassem of the inference modules may be configured to receive
bling an executable is provided . The method includes : 5 additional rules from a user and / or from additional program
parsing the executable , and decoding possible instructions in matic analysis .
the executable in connection with the parsing ; generating an Counterpart system , computer program , and / or non - tran
initial fact database comprising the possible instructions ; sitory computer readable storage media also are contem
generating an enhanced fact database by executing a plu plated herein . For instance , in certain example embodi
rality of inference modules on the initial fact database , at 10 ments , a system for disassembling an executable includes a
least some of the inference modules being expressed in a non - transitory computer readable storage medium . Process
declarative query language and including (a) a code infer ing resources including at least one memory and a hardware
ence module structured to compute valid instructions orga processor , the processing resources being configured to :
nized in blocks of code , (b) a symbolization module struc- 15 possible instructions in the executable in connection with the receive the executable ; parse the executable , and decode
tured to disambiguate between symbols and memory parsing ; generate an initial fact database comprising the addresses , and (c) a function inference module structured to possible instructions , the initial fact database being stored to identify functions ; and organizing content from the the non - transitory computer readable storage medium ; gen enhanced fact database into a format of valid assembler erate an enhanced fact database by executing a plurality of
code . 20 inference modules on the initial fact database , at least some

According to certain example embodiments , the declara of the inference modules being expressed in a declarative
tive query language may be Datalog . query language and including (a) a code inference module

According to certain example embodiments , one or more structured to compute valid instructions organized in blocks
of the inference modules may implement a soft heuristic in of code , (b) a symbolization module structured to disam
addition to hard rules for fact generation . In some instances , 25 biguate between symbols and memory addresses , and (c) a
all hard rules and soft heuristics may be encoded into function inference module structured to identify functions ,
Datalog rules . In certain example embodiments , execution the enhanced fact database being stored to the non - transitory
of a Datalog engine on the Datalog rules may result in a computer readable storage medium ; and organize content
consistent fact universe for the initial fact database and the from the enhanced fact database into a format of valid
enhanced fact database . 30 assembler code . Similarly , in certain example embodiments ,

According to certain example embodiments , new hard there is provided a non - transitory computer readable storage
rules and / or new soft heuristics may be definable and medium tangibly storing a program that , when executed by
suitable for use in generating facts for the initial fact a computing system including at least one processor , is
database and / or enhanced fact database , independent of configured to disassemble an executable , by performing
existing hard rules and / or soft heuristics . 35 functionality comprising : parsing the executable , and decod

According to certain example embodiments , one or more ing possible instructions in the executable in connection
of the inference modules may implement a heuristic by : with the parsing ; generating an initial fact database com
generating a problem / solution space for the issue for which prising the possible instructions ; generating an enhanced
evidence is to be built and / or for which a conflict is to be fact database by executing a plurality of inference modules
resolved ; subjecting at least some of the members in the 40 on the initial fact database , at least some of the inference
problem solution space to rules that assign points to different modules being expressed in a declarative query language
outcomes related to the issue for which the evidence is to be and including (a) a code inference module structured to
built and / or for which the conflict is to be resolved ; deter compute valid instructions organized in blocks of code , (b)
mining which one or more members of the problem / solution a symbolization module structured to disambiguate between
space has / have the most points ; and admitting to the 45 symbols and memory addresses , and (c) a function inference
enhanced fact database the one or more members of the module structured to identify functions ; and organizing
problem / solution space determined have the most points . content from the enhanced fact database into a format of
A heuristic may be implemented for code block detection in valid assembler code . The features described in the preced
the code inference module , for example . ing paragraphs and those set forth in more detail below may

According to certain example embodiments , the symbol- 50 be used with these counterparts , as well .
ization module may implement heuristics for determining These aspects , features , and example embodiments may
that an array likely is present based on the presence of a be used separately and / or applied in various combinations to
plurality of evenly - spaced symbols , determining that an achieve yet further embodiments of this invention .
accessed address likely is a valid pointer based on a size of
the associated access being pointer - sized , determining that a 55 BRIEF DESCRIPTION OF THE DRAWINGS
pointer candidate in what appears to be a string is less likely
to be a valid pointer , and / or determining that a pointer These and other features and advantages may be better
candidate that is aligned is more likely to be a valid pointer . and more completely understood by reference to the follow

According to certain example embodiments , the symbol ing detailed description of exemplary illustrative embodi
ization module may include definition to use chain analysis , 60 ments in conjunction with the drawings , of which :
value analysis , and / or data access analysis . FIG . 1 is a block diagram schematically showing the

According to certain example embodiments , the function application of a disassembler program to an executable to
inference module may use symbol information and heuris produce assembly code as output , in accordance with certain
tics to identify a first set of functions , and attempts to add a example embodiments ;
second set of functions by finding blocks of code that are 65 FIG . 2 shows an example overall workflow for the FIG .
contiguous to , but not reachable from , a complete function 1 components , in accordance with certain example embodi
in the first set of functions . ments ;

US 10,705,814 B2
5 6

FIG . 3 is a flowchart showing how soft heuristics can be mation present explicitly in tables in the executable file 104 ,
implemented using hard rules to build evidence for , and as well as all possible instruction decodings from the execut
resolve conflicts in , analysis in connection with code block able 104. The instruction decoder 110 provides instruction
detection , in certain example embodiments ; and related facts for the Datalog analysis , which will reject some

FIG . 4 is a block diagram showing components of the 5 instructions , confirm some instructions , and add symbolic
disassembly approach that makes use of rules and heuristics information to instruction operands , in addition to perform
according to certain example embodiments . ing other analyses . In this regard , the decoding of every

possible instruction offset creates a superset of possible
DETAILED DESCRIPTION instruction offsets to prepare a binary for subsequent analy

10 sis via Datalog .
Certain example embodiments relate to techniques for A Datalog analysis engine 114 is used to apply inference

reconstructing assembly code from an executable program . rules , which are expressed in Datalog and are designed to
A declarative logic programming language is used to com perform disassembly , to the initial database 112 of simple
pile reverse engineering , binary analysis , and disassembly facts . This analysis generates increasingly sophisticated
rules into a format that may be applied to an executable 15 information about the assembly code of the executable 104
program , yielding disassembly of that program . Datalog , for until the analysis completes . The result of the Datalog
example , can be used as a query language for deductive analysis engine 114 is a final enhanced fact database 116 .
databases , to facilitate this approach . Certain example The enhanced fact database 116 has sufficient information so
embodiments thus involve (1) preparation of an executable that assembly code 106 for the original executable 104 can
for Datalog analysis , (2) inference rules and the application 20 be extracted . The enhanced fact database 116 may include ,
of Datalog for program analysis , including the application of for example , the location of code in the executable 104 ,
Datalog to the domain of binary reverse engineering and symbolization of values in the executable 104 , the bound
analysis , and (3) the collection of assembly code from the aries of functions in the executable 104 , etc.
results of the Datalog analysis . Specific Datalog rules used A Datalog program is a collection of Datalog rules . A
for analysis and disassembly are set forth below . Addition- 25 Datalog rule is a restricted kind of horn clause with the
ally , as will become clearer from the description below , these following format : h : -t1 , t2 , ... tn where h , t1 , t2 , ... tn are
rules can include both “ hard rules " and " soft rules " or predicates . Rules represent a logical entailment : his true
heuristics , even though standard Datalog does not support only if t1 , t2 , ... , and tn are true . One property of Datalog
the latter . The reconstruction of assembly code from an rules is that they can be recursive . For example , the follow
executable program is a useful capability , for example , in 30 ing rules describe an ancestor relation based on a parent
enabling analysis , modification , and recompilation of the relation :
executable . ancestor (X , Y) : - parent (X , Y) .

Datalog is a declarative logic programming language that , ancestor (X , Y) : - ancestor (X , Z) , parent (Z , Y) .
syntactically , is a subset of Prolog . Datalog is often used as These rules can be expressed in natural language as follows :
a query language for deductive databases . Statements of a 35 X is an ancestor of Y if X is a parent of Y or
Datalog program can be stated in any order . Furthermore , X is an ancestor of Y if X is an ancestor of Z and Z is a parent
Datalog queries on finite sets are guaranteed to terminate . As of Y.
is known to those skilled in the art , the declarative program A Datalog engine takes as input a set of facts (which are
ming paradigm (to which Datalog adheres , as noted above) predicates known to be true) and a Datalog program (a set
expresses the logic of a computation without describing its 40 of rules) . The initial set of facts defines the initial knowl
control flow . Declarative programming often considers pro edge , and it is commonly known as the extensional database
grams as theories of a formal logic , and computations as (EDB) . The set of Datalog rules is commonly known as the
deductions in that logic space . intensional database (IDB) . Then , the Datalog engine gen

Referring now more particularly to the drawings in which erates a new set of facts by repeatedly applying the inference
like reference numerals indicate like parts throughout the 45 rules .
several views , FIG . 1 is a block diagram schematically Continuing with the previous example , consider the fol
showing the application of a disassembler program 102 to an lowing set of initial facts : parent (mary , john) , parent (john ,
executable 104 to produce assembly code 106 as output , in james) . The Datalog engine applies the first rule twice to
accordance with certain example embodiments ; and FIG . 2 generate ancestor (mary , john) and ancestor (john , james)
shows an example overall workflow for the FIG . 1 compo- 50 and then it applies the second rule once to generate ancestor
nents , in accordance with certain example embodiments . As (mary , james) . These three generated facts are the output of
shown in FIGS . 1-2 , the executable program 104 serves as the Datalog engine . The enhanced database 116 is the union
input to the disassembler program 102. This input may be in of the initial facts (EDB) and the inferred facts .
any suitable executable file format such as , for example , the The used Datalog engine takes a Datalog program and
Linux executable and linkable format (ELF) . The assembly 55 generates highly efficient C ++ parallel code , for example . It
code 106 is the output of the disassembler program 102 and does that in certain example instances by applying futamura
corresponds to the original executable program 104 . projections to a Datalog interpreter applied to the Datalog

The unpacker 108 parses the file format of the executable program . The Datalog interpreter is based on semi - naïve
104. Thus , the unpacker 108 provides simple information evaluation . The Datalog engine also supports rules with
concerning the executable 104 to seed the Datalog analysis . 60 stratified negation , arithmetic operations , and aggregation
The instruction decoder 110 works with the unpacker 108 to predicates . Aggregation predicates can count the number of
decode potential instructions from the executable 104. The facts of some type or compute the maximum , minimum or
unpacker 108 and the instruction decoder 110 help populate sum of a set of facts . This capability is useful in implement
the initial fact database 112. The initial fact database 112 in ing “ soft ” heuristics as discussed herein . Soufflé may be
this sense stores simple facts concerning the executable 104. 65 used in certain example embodiments .
It may be organized in a format enabling subsequent pro The instruction collection module 118 helps organize the
cessing by Datalog . Facts can include , for example , infor information in the enhanced fact database 116 into the

the program

US 10,705,814 B2
7 8

format of valid assembler code 106. Thus , the assembly code be compared to one another objectively and absolutely . The
106 may be thought of as being collected from the enhanced collection of the hard rules that assign points as well as the
fact database 116. The instruction collection module gener hard rules that come up with an answer based on the
ates an internal binary representation (e.g. , in gtirb format , assignment of points collectively represent the heuristics .
as defined via Github , for example) including an interpro- 5 The following code snippets are examples of rules that
cedural control flow graph , a set of data objects that partition may be used to assign points to the blocks :
the data sections of the binary , and a set of auxiliary tables // give 20 points to a block ‘ Block ’ if it is the entry point of
that contain information relative to the symbols and function
locations . The information generated by the code inference block_points (Block , 0,20 , " start point ") :
is used to build the control flow graph and the symbolization 10 entry_point (Block) .
information is used to partition the data sections into data // give 4 points to block Block ' for each other block
objects . The internal representation can then be used to ‘ OtherBlock ’ that is not overlapping with anything and
transform the binary and to print assembly code that is ready has a direct jump to ‘ Block ’
for reassembly . block_points (Block , OtherBlock , 4 , " direct jump ") :

The framework discussed above advantageously uses a 15 direct_jump (EA , Block) ,
declarative program engine for binary reverse engineering phase2.likely_ea (EA , OtherBlock) ,
and analysis , as well as disassembly . As noted above , OtherBlock ! = Block ,
Datalog may be compiled into an efficient executable format ! block_is_overlaping (OtherBlock) .
for these and / or other purposes , and the unpacker and Finally , given two overlapping blocks , the one that has
decoder in essence may help to prepare a binary for the 20 fewer points is discarded (step 308) . The following code
subsequent Datalog - based analysis . It will be appreciated snippet is a simplified version of the rule for doing so :
that the unpacker and / or decoder may be external to the discarded_block (Block) :
Datalog - based analysis engine in certain example embodi block_overlap (Block , Block2)
ments . sum X : { block_points (Block , _ , X , _) } < sum

Datalog inference rules advantageously may be used for 25 Y : { block_points (Block2 , _ , Y , _) } .
the modular development of binary analysis heuristics . where sum x : { bloc pred (Block , _ , X , _) } sums all the points
Advantageously , many rules and modules (e.g. , including for the Block generated with the previous rules .
those described below , for example) may be developed It will be appreciated that there may be more than one set
independently of one another but nonetheless may be fully of overlapping code blocks , and that a given set may include
automatically combined by the Datalog analysis engine in 30 two or more overlapping code blocks . The approach
performing a unified analysis . The modularity of analysis described above may be used in such cases , e.g. , on an
heuristics promotes flexibility , as the analysis engine can be overlapping set by overlapping set basis . Similarly , the
updated take into account different assemblers , hardware comparison may be performed two at a time , three at a time ,
architectures , etc. , which may impact how the binaries are etc. , in different implementations .
generated . Similarly , the modularity of analysis heuristics 35 It will be appreciated from the above that this or a similar
promotes flexibility , as rules may be swapped in and out approach may be used to build evidence for , and resolve
automatically , e.g. , as determinations of efficacy are made conflicts associated with , other issues . For instance , a similar
for individual rules and combinations or sub - combinations approach may be used when assigning a data access pattern
of rules , as experience with the disassembler program to a memory location . In such a case , there may be multiple
grows , etc. 40 candidates , and a choice may be made from among such
As indicated above , the decoder may generate a list of all candidates by considering , for example , the “ distance ” to the

possible instructions , and the determination of where actual initial memory access . This could be seen as assigning a
instruction blocks begin and end may be made from this list . number of points equal to the distance , with the difference
Sometimes , however , it may be difficult to build evidence being that the data access pattern with the minimum distance
for , and resolve conflicts , in Datalog , e.g. , when determining 45 is selected . As another example , this or a similar approach
where actual instruction blocks begin and end . See , for may be used for integrating the heuristics for function
example , the illustration above in which the sequence boundary identification described below .
0101001100110101 can reasonably be interpreted as abba , In general , one form of soft heuristics may be imple
cd , cab , etc. Certain example embodiments address this mented by (a) generating the problem / solution space for the
concern and provide an approach for efficiently building 50 issue for which the evidence is to be built and / or for which
evidence for , and resolving conflicts in , Datalog . This is the conflict is to be resolved , (b) defining a plurality of hard
made possible in certain example embodiments via the rules that assign points to different outcomes related to the
specification of “ soft ” heuristics . These “ soft ” heuristics issue for which the evidence is to be built and / or for which
may be implemented as described below , even though the conflict is to be resolved , (c) subjecting at least some of
Datalog is a language that only permits hard “ rules . ” 55 the members in the problem / solution space to the hard rules ,

FIG . 3 is a flowchart showing how soft heuristics can be (d) determining which one or more members of the problem /
implemented using hard rules to build evidence for , and solution space has / have the most points , and (e) admitting to
resolve conflicts in , analysis in connection with code block the enhanced database the one or more members of the
detection , in certain example embodiments . As will become problem / solution space determined to have the most points .
clearer from the below , this specific approach may be used 60 As will be apparent from the below , soft heuristics may be
in connection with the code inference module of certain implemented in other ways , e.g. , by providing pre - set rules
example embodiments . In any event , the FIG . 3 example of - thumb or the like , accepting facts based on whether a
approach involves generating a superset of the real code rule - of - thumb produces a score above a predetermined
blocks (step 302) . Code blocks that are overlapping then are threshold , etc.
detected (step 304) . For overlapping code blocks , a set of 65 It also will be appreciated from the above that certain
facts that give points to each of the blocks is generated (step example embodiments implement specific rules and heuris
306) . In other words , these hard rules assign points that can tics enabling efficient disassembly in Datalog . In this regard ,

US 10,705,814 B2
9 10

the analysis engine of certain example embodiments may be though the jump is unconditional) and the code at the jump
structured to run to perform declarative query program logic destination A2 . A subset 410 of the possible targets list 406
(e.g. , in Datalog) organized in a plurality of different mod is generated .
ules on the facts in the initial fact database and / or output The code inference module 402 also computes block_
from modules executed in serial and / or in parallel . For s still_overlap for debugging purposes , e.g. , based on the
instance , the analysis engine of certain example embodi subset 410 of the possible targets list 406 is generated . That
ments implements a disassembly approach that has three is , blocks of code that overlap with each other (and therefore
main components , namely , code inference , symbolization , are in conflict) therefore can be detected . These blocks are
and function inference , components . These components are assigned points according to several heuristics , e.g. , as
shown in the FIG . 4 example block diagram and are imple 10 described above in connection with FIG . 3. Predefined

heuristics may be stored to a data store accessible by the mented in Datalog in certain example embodiments . Sym code inference module 402 in certain example embodi bolization may include , for example , def_use analysis , value ments . Then , for each two conflicting blocks , the one with analysis , data access analysis , pointer reattribution , and / or more points is kept , e.g. , as also described above in con the like . In addition to the code inference , symbolization , 15 nection with FIG . 3. The enhanced fact database 116 thus
and function inference components , one or more modules can be populated with the code_in_block , block , and code may be provided to consider special cases such as , for facts 412 , as indicated above .
example , relative jump tables , as well as generic compo The second disassembly approach , symbolization , may be
nents and tables . Each of the three main components is thought of as relating to literal reference disambiguation . As
discussed , in turn , below . 20 will be appreciated from the above , the symbolization mod

The first disassembly approach , code inference , may be ule 414 may include , for example , def_use analysis 416 ,
thought of as relating to code location identification . A code value analysis 418 , data access analysis 420 , pointer reat
inference module 402 in the analysis engine 114 computes tribution 422 , and / or other modules . The def_use module
the valid instructions organized in blocks of code . It infers 416 computes definition - to - use (DU) chains for a subset of
the facts code_in_block , block , and code . Blocks in this 25 the registers . A DU chain includes a definition D and all uses
sense are a sequence of contiguous instructions . A fact of the U reachable from that definition without any intervening
form block (Address) specifies that there is a block of code definitions . DU chains in general can be computed using a
starting at address “ Address . ” A fact of the form code static code analysis approach such as data flow analysis , and
(Address) specifies that there is an instruction at address DU chains are useful in identifying and tracking the logical
“ Address . ” Finally , a fact code_in_block (AI , AB) states that 30 representations of the variables through the code . The use of
the instruction at address “ AI ” belongs to the block starting Datalog , for example , is advantageous in certain example

embodiments , as these kinds of data flow analyses are very at address “ AB ” . easy to express therein . In certain example embodiments , the This may be accomplished by using a traverse_code calculation of DU chains is limited to those chains that are
component , twice . The first traversal 404 considers any 35 related eventually to an access to memory . potential address in the code or data as a starting point from The DU facts generated have the following format in which to start traversing (a possible_target) and provides a certain example embodiments : def_used (EADef , Register , first approximation of the code . The results of this first EAUsed , IndexUsed) , which represents that the register
traversal can be used to define better block limits (block start “ Register " defined in the address EADef is used in the
and end points) based on a list of possible target code blocks 40 address EAUsed in the operand with index “ IndexUsed ” .
406. For example , block limits for all the locations that are Consider the following code snippet :
possible targets and for all the locations where two potential 1 : mov RAX , RCX
blocks converge may be defined . Thus , in the second tra 5 : add RAX , RAX
versal 408 , the generated blocks will not have “ common 8 : mov RDX , 0x404040
tails ” where there are two blocks that start at different 45 13 : mov BX , [RAX + RDX]
locations but converge into the same location . Some of the facts generated by the analysis are :

The second traversal 408 only considers an address def_used (1 , RAX , 5 , 1) and def_used (1 , RAX , 5 , 2) : The
appearing in the code as a possible target if the code where register RAX is defined in address 1 and used in
it appears has been already traversed . Consider , for example , address 5 in the first operand and second operands .
a jump instruction located at address A1 and whose desti- 50 def_used (5 , RAX , 13 , 2) : The register RAX is defined in
nation is A2 , represented by “ A1 : JMP A2 ” . A2 constitutes address 5 and used in address 13 in the second operand .
a possible target and thus an address where disassembling def_used (8 , RDX , 13 , 2) : The register RDX is defined in
starts . However , in the second traversal , A2 is considered as address 8 and used in address 13 in the second operand .
a starting point only once A1 has been traversed . In contrast , The value module computes the value held in a register at
the first traversal considers A2 as a possible starting point 55 a point . The ultimate objective of the value module is to
even if Al is never visited (and thus appears in the list of estimate how memory is being accessed . For that purpose ,
possible targets 406 generated by the first traversal 404) . an analysis that approximates the values of the registers that
There are two classical approaches for disassembly : linear are used to access memory is performed . There are many
sweep and recursive traversal . A linear - sweep disassembly possible ways of approximating the values of the registers .
traverses all the code sections sequentially , whereas a recur- 60 For example , it is possible to just approximate the values of
sive traversal starts from an entry point and follows the the registers that contain a constant value . This could be
control flow of the program . The second traversal here in a represented with a single number . However , this represen
sense is more similar to a recursive traversal disassembly , tation may be very limited . On the other extreme , it is
although it still has a linear sweep component as it explores possible to represent the value of a register with a complex
the instructions after locations that cannot fall - through . In 65 symbolic expression such as , for example , a polynomial .
the previous example involving “ A1 : JMP A2 ” , the second The chosen representation may be between these two
traversal will explore both the code after the jump (even extremes , thus achieving a compromise between expressiv

are

US 10,705,814 B2
11 12

ity and efficiency . It is based on the idea that typical memory plier , it is likely that X + multiplier , X + 2 * multiplier , etc. , are
accesses follow a particular pattern where the memory also accessed the same way . To determine how long to repeat
address that is accessed is computed using a base address , this pattern , these accesses are propagated using the multi
plus an index multiplied by a multiplier . Therefore , the value plier until some other conflicting access is reached . For
analysis infers facts of the for value_reg (EA , Reg , EA2 , 5 example , addresses Ox404040 + 2 , Ox404040 + 4 ,
Reg2 , Multiplier , Offset) which represent that the value of a accessed with the same pattern (2 bytes are read from
register at a point (EA) is expressed is equal to the value of instruction 13) .
another register at another point (EA2_regl) multiplied by a The results may be refined in a number of different ways .
multiplier plus an offset (or base address) : First , for example , once the accesses have been propagated ,

10 it is possible that several data access patterns have been
val (EA , RegReg , EA) = val (EA2 , Reg2Reg1 , EA_regi) * propagated to the same location . The one that is closest to Multiplier + Offset the location may be selected , and the other propagated data

Consider the example provided above in connection with accesses may be discarded . It is noted that this is similar to
the DU techniques of certain example embodiments . Some assigning points to different data access patterns , as dis
of the facts inferred by the analysis are : 15 cussed above . Second , for example , often there will be data

value_reg (5 , RAX , 1 , RCX , 1 , 0) : The value of register accesses that are related . For instance , accesses to different
RAX at the address 5 (before executing the instruction) fields of an array of structs can be considered related . Thus ,
is equal to the value of register RCX at address 1 . certain example embodiments may consider those accesses

value_reg (13 , RAX , 5 , RAX , 2 , 0) : The value of the to be “ paired . ” In such cases , better precision is possible if
register RAX at the address 13 is equal to two times the 20 those accesses are propagated together . In this regard , propa
value of the register RAX at address 5 . gation can be stopped as soon as any of the paired accesses

value_reg (13 , RDX , 5 , NONE , 0 , 0x404040) : The value reaches another access .
of the register RDX at the address 13 is equal to Pairing may be thought of as follows : Assume that there
0x404040 . are two accesses to locations X and Y with multipliers Mi

The analysis first computes relations of the form defined 25 and M2 . These two accesses can be considered paired if
above for different instructions and using the DU chains . M1 = M2 and X < = Y X + M1 .
Then , a second propagation phase chains together relations A pointer reattribution module 422 also may be used in
like the above . For instance , the second phase of the value connection with symbolization efforts . This may include , for
analysis would combine the two first facts above to generate example , detecting cases where a number is the result of a
the following fact : 30 symbol + constant . The pointer reattribution 422 may make
value_reg (13 , RAX , 1 , RCX , 2 , 0) : The value of register use of the results of the above analyses (the def_use , value ,
RAX at the address 13 is equal to two times the value of and data access analyses) . In other words , pointer reattribu
register RCX at address 1 . tion is basically a part of the symbolization that helps take

In addition to chaining relations together , cases are care of a set of specific cases , namely , the symbolic expres
handled where , for example , two registers being added 35 sions that are not just a symbol but a symbol + constant .
together or subtracted if it turns out that they can be Pointer reattribution in certain example embodiments gen
expressed in terms of the same register . The second phase erates the facts symbolic_operand_moved and symbolic_
also detects possible loops . If there is a fact of the form data_moved , e.g. , as discussed in greater detail below .
value_reg (EA , Reg , EA , Reg , 1 , N) where Reg is defined in The data symbolization itself may use the following
terms of itself at the same address , then Reg might represent 40 and / or other heuristics , which may be predefined and stored
a counter of a loop that is incremented N in each iteration . in a data store :
Output from the symbolization module 414 ultimately is An address_array heuristic may help determine whether
provided to the enhanced fact database . potential symbols are evenly spaced . The more sym

The data access module 420 computes data access pat bols , the less likely they are all value collisions . Having
terns that represent that an address is accessed with a size 45 at least three symbols evenly spaced may be considered
and multiplier from a particular instruction . The preferred to be an array .
data access (e.g. , from a plurality of possible data accessions A preferred_data_access heuristic and a data_access_pat
that might be valid in the disassembly) is the address most terns heuristics (from the data access analysis module
likely accessed from the data access pattern at a particular 420 discussed above) may determine that (1) if an
location . In certain example embodiments , a data access 50 address is accessed with the size of the pointer , it is
pattern has the form data_access_pattern (Address , Size , more likely to be a pointer , and / or (2) if an address is
Multiplier , Origin) . Data access patterns may computed accessed with a size other than the size of the pointers ,
in certain example embodiments by checking memory it almost certainly is not a pointer .
accesses , and with the help of the value analysis module 418 . A strings heuristic may determine that if there is a pointer
Some special cases are checked explicitly . Continuing with 55 candidate in what seems to be a string , it is less likely
the example from above , the data access pattern for instruc to be a pointer .
tion 13 will be computed . This instruction accesses the An aligned location heuristic may determine that if a
memory at RAX + RDX . The value analysis tells us that the pointer candidate is aligned , it is more likely to be a
value of RAX can be expressed as 2 * RCX (at address 1) and pointer . Compilers usually (but not always) store point
RDX is 0x404040 . Therefore , there is an access of the form 60 ers aligned .
2 * X + 0X404040 . It also is known that instruction 13 reads The final symbolization information has the following
two bytes of memory . Consequently , the conclusion can be format :
reached that address 0x404040 is probably accessed to read symbolic_operand (EA , Index) : the instruction at address
2 bytes of memory with a 2 multiplier . This is represented EA has a symbol in the Index - th operand .
with the following fact : data_access_pattern (0x404040 , 2 , 65 symbolic_operand_moved (EA , Index , Original , Moved) :
2 , 13) . These data access patterns provide very sparse the instruction at address EA has a symbol in the
information , but if an address X is accessed with a multi Index - th operand . The operand contains the number

be

US 10,705,814 B2
13 14

“ Original ” but it refers to the symbol at the address universe of facts about the program is automatically con
“ Moved ” . Therefore , the symbolic operand has an sistent . For example , determinations on code location fit
expression of the form symbol + constant , where symbol determinations on symbolization , fit determinations on func
is “ Moved ” and constant is “ Moved - Original ” . tion boundaries , etc. This consistency is a significant tech

symbolic_data (EA) : the data at address EA is symbolic . 5 nical advantage and technical improvement , e.g. , compared
symbolic_data_moved (EA , Original , Moved) : the data at to conventional approaches to generating disassemblies and
address EA is symbolic . As for the operand case , it in terms of enable the creation of reassemblable disassem
contains the number " Original ” , but it refers to the blies . A small set of properties of programs (in effect , the
symbol at the address “ Moved ” . Therefore , the sym physics of the world of binary execution) in which the
bolic expression at address EA has the form symbol + 10 effects of all rules and heuristics are cached out is defined .
constant , where symbol is “ Moved ” and constant is From that point on , it becomes possible to write new rules
" Moved - Original " . and heuristics with complete independence of existing rules

symbol_minus_symbol (EA , Symbo11 , Symbo12) : The and heuristics relying on the Datalog engine to mediate all
data at address EA is symbolic . The symbolic expres interactions between rules through our defined properties .
sion is the difference between two symbols : Symbo12- 15 This architecture is technically advantageous because it both
Symboll . (1) significantly eases the development of new heuristics and

The function boundary identification module 424 may (2) makes it possible to “ plug in ” new heuristics (potentially
operate in several phases in certain example embodiments . even at run time) with minimal integration .
In a first function inference phase 426 , symbol information Although certain example embodiments have been
(from the binary symbol table if it is present) and heuristics 20 described in connection with Datalog , it will be appreciated
may be used to identify functions (e.g. , from the identified that other declarative programming languages (including
blocks of code) . Below , some of the heuristics are enumer answer set programming (ASP) languages) may be used in
ated : different example embodiments . Moreover , Prolog , SQL ,

If an address is the destination of a direct call , it is the XQuery , probabilistic graph models (PGMs) , and / or other
beginning of a function . 25 languages may be used in connection with different example

If an address is at the beginning of a code section , it is also embodiments . SQL and XQuery may be used , for example ,
the beginning of a function . provided that they are implemented , or modified for imple

Some sections usually contain function pointers , e.g. , mentation , with sufficient expressive power . PGMs are simi
“ .init_array ” in ELF binaries . Any symbol in one of lar to Datalog except that they explicitly do allow for
these sections is likely to point to the beginning of a 30 weights on rules , which can make implementation easier but
function . execution slower in general . Furthermore , certain example

There are sequences of instructions that are typical at the embodiments may be made to work with source program
beginning of ns , i.e. , function prologues . ming languages including , for example , C , C ++ , assembly ,

The code that precedes the beginning of a function also Java , etc.
adheres to typical patterns such as , for example , uncon- 35 It will be appreciated that certain example embodiments
ditional jumps or return instructions followed by pad may run in connection with a standalone or networked
ding using NOPs (no operations) to ensure certain computer and / or computer system comprising a plurality of
alignment . computer nodes . In an example runtime environment , for

In the data sections , there can be symbol tables . These example , an application for creating reassemblable disas
tables usually correspond to jump tables (from switch 40 semblies according to an embodiment may run in memory .
instructions) or function tables . If it is concluded that Components may include , for example , memory , at least one
one or several of the symbols in a table refer to processor , a data store , an OS kernel , etc. It will be appre
functions , it is likely that the others refer to functions ciated that such an environment may be used in connection
as well . with , or be simply backed by an embodiment as shown in

Similarly , an isolated symbol in a data section (not 45 FIGS . 1-4 . It also will be appreciated that certain example
contained in a symbol table) that points to code is more embodiments may work in any design time and / or runtime
likely to be a function reference . environment including , for example , Windows , Linux , Unix ,

In a second function inference phase 428 , new functions MacOS , and / or other operating systems present on the
may be added by finding blocks of code that are contiguous example electronic devices mentioned above . In a similar
to , but not reachable from , a complete function . A complete 50 vein , the techniques described herein may be used in any
function is a function that does not have unresolved jumps . suitable combination , sub - combination , or combination of
These blocks may be deemed new functions . sub - combinations , e.g. , as appropriate to the programming
Once the enhanced fact database has been populated , language , runtime environment , etc.

content from it is organized into a format of valid assembler It will be appreciated that as used herein , the terms
code . 55 system , subsystem , service , programmed logic circuitry , and

Although certain inference modules have been described the like may be implemented as any suitable combination of
above , it will be appreciated that others may be implemented software , hardware , firmware , and / or the like . It also will be
in place of , or together with , those specifically mentioned . appreciated that the storage locations herein may be any
For example , in certain example embodiments , inference suitable combination of disk drive devices , memory loca
modules implemented in Datalog can receive and consider 60 tions , solid state drives , CD - ROMs , DVDs , tape backups ,
additional information provided by the user or other analy storage area network (SAN) systems , and / or any other
ses in the form of additional facts . This additional informa appropriate tangible computer readable storage medium . It
tion can guide the disassembly , e.g. , in case the existing also will be appreciated that the techniques described herein
heuristics and analyses were insufficient . may be accomplished by having a processor (e.g. , central

It will be appreciated that certain example embodiments 65 processing unit (CPU) or specialized processor) execute
encode all rules and heuristics into Datalog rules and , in so instructions that may be tangibly stored on a computer
doing , Datalog advantageously ensures that the resulting readable storage medium .

10

US 10,705,814 B2
15 16

While the invention has been described in connection pointer candidate in what appears to be a string is less likely
with what is presently considered to be the most practical to be a valid pointer , and / or determining that a pointer
and preferred embodiment , it is to be understood that the candidate that is aligned is more likely to be a valid pointer .
invention is not to be limited to the disclosed embodiment , 8. The method of claim 1 , wherein the symbolization
but on the contrary , is intended to cover various modifica- 5 module includes definition to use chain analysis , value
tions and equivalent arrangements included within the spirit analysis , and / or data access analysis . and scope of the appended claims . 9. The method of claim 1 , wherein the function inference
What is claimed is : module uses symbol information and heuristics to identify a 1. A method of disassembling an executable , the method first set of functions , and attempts to add a second set of comprising : functions by finding blocks of code that are contiguous to , parsing the executable , and decoding possible instructions

in the executable in connection with the parsing ; but not reachable from , a complete function in the first set
of functions . generating an initial fact database comprising the possible

instructions ; 10. The method of claim 1 , wherein the valid assembler
code is assembleable into a valid executable . generating an enhanced fact database by executing a 15

plurality of inference modules on the initial fact data 11. The method of claim 1 , wherein one or more of the
base , at least some of the inference modules being inference modules are configured to receive additional rules
expressed in a declarative query language and includ from a user and / or from additional programmatic analysis .
ing (a) a code inference module structured to compute 12. A system for disassembling an executable , compris
valid instructions organized in blocks of code , (b) a 20 ing :
symbolization module structured to disambiguate a non - transitory computer readable storage medium ; and
between symbols and memory addresses , and (c) a processing resources including at least one memory and a
function inference module structured to identify func hardware processor , the processing resources being
tions ; and configured to :

organizing content from the enhanced fact database into a 25 receive the executable ;
format of valid assembler code ; parse the executable , and decode possible instructions

wherein one or more of the inference modules imple in the executable in connection with the parsing ;
ment (s) a soft heuristic by : generate an initial fact database comprising the possible generating a problem / solution space for the issue for instructions , the initial fact database being stored to which evidence is to be built and / or for which a 30 the non - transitory computer readable storage conflict is to be resolved ; medium ; subjecting at least some of the members in the problem /

solution space to rules that assign points generate an enhanced fact database by executing a different
outcomes related to the issue for which the evidence plurality of inference modules on the initial fact
is to be built and / or for which the conflict is to be 35 database , at least some of the inference modules
resolved ; being expressed in a declarative query language and

determining which one or more members of the prob including (a) a code inference module structured to
lem / solution space has / have the most points ; and compute valid instructions organized in blocks of

admitting to the enhanced fact database the one or more code , (b) a symbolization module structured to dis
members of the problem / solution space determined 40 ambiguate between symbols and memory addresses ,
to have the most points ; and and (c) a function inference module structured to

wherein one or more of the inference modules imple identify functions , the enhanced fact database being
ment (s) the soft heuristic in addition to hard rules for stored to the non - transitory computer readable stor
fact generation , the hard rules and soft heuristic (s) age medium ; and
being encoded into declarative relations . organize content from the enhanced fact database into

2. The method of claim 1 , wherein the declarative query a format of valid assembler code ,
language is Datalog . wherein one or more of the inference modules imple

3. The method of claim 1 , wherein all hard rules and soft ment (s) a soft heuristic by :
heuristics are encoded into Datalog rules . generating a problem / solution space for the issue for

4. The method of claim 3 , wherein execution of a Datalog 50 which evidence is to be built and / or for which a
engine on the Datalog rules results in a consistent fact conflict is to be resolved ;
universe for the initial fact database and the enhanced fact subjecting at least some of the members in the problem /
database . solution space to rules that assign points to different

5. The method of claim 1 , wherein new hard rules and / or outcomes related to the issue for which the evidence
new soft heuristics are definable and suitable for use in 55 is to be built and / or for which the conflict is to be
generating facts for the initial fact database and / or enhanced resolved ;
fact database , independent of existing hard rules and / or soft determining which one or more members of the prob
heuristics . lem / solution space has / have the most points ; and

6. The method of claim 1 , wherein the soft heuristic is admitting to the enhanced fact database the one or more
implemented for code block detection in the code inference 60 members of the problem solution space determined
module . to have the most points ; and

7. The method of claim 1 , wherein the symbolization wherein one or more of the inference modules imple
module implements heuristics for determining that an array ment (s) the soft heuristic in addition to hard rules for
likely is present based on the presence of a plurality of fact generation , the hard rules and soft heuristic (s)
evenly - spaced symbols , determining that an accessed 65 being encoded into declarative relations .
address likely is a valid pointer based on a size of the 13. The system of claim 12 , wherein the declarative query
associated access being pointer - sized , determining that a language is Datalog .

45

17

5

10

15

US 10,705,814 B2
18

14. The system of claim 12 , wherein all hard rules and soft generating an initial fact database comprising the possible
heuristics are encoded into Datalog rules , and instructions ;

wherein execution of a Datalog engine on the Datalog generating an enhanced fact database by executing a
rules results in a consistent fact universe for the initial plurality of inference modules on the initial fact data fact database and the enhanced fact database . base , at least some of the inference modules being 15. The system of claim 12 , wherein the symbolization

module implements heuristics for determining that an array expressed in a declarative query language and includ
likely is present based on the presence of a plurality of ing (a) a code inference module structured to compute
evenly - spaced symbols , determining that an accessed valid instructions organized in blocks of code , (b) a
address likely is a valid pointer based on a size of the symbolization module structured to disambiguate
associated access being pointer - sized , determining that a between symbols and memory addresses , and (c) a
pointer candidate in what appears to be a string is less likely function inference module structured to identify func
to be a valid pointer , and / or determining that a pointer tions ; and
candidate that is aligned is more likely to be a valid pointer . organizing content from the enhanced fact database into a

16. The system of claim 12 , wherein the symbolization format of valid assembler code ,
module includes definition to use chain analysis , value wherein one or more of the inference modules imple
analysis , and / or data access analysis . ment (s) a soft heuristic by :

17. The system of claim 12 , wherein the function infer generating a problem / solution space for the issue for
which evidence is to be built and / or for which a ence module uses symbol information and heuristics to

identify a first set of functions , and attempts to add a second conflict is to be resolved ;
set of functions by finding blocks of code that are contiguous subjecting at least some of the members in the problem /
to , but not reachable from , a complete function in the first set solution space to rules that assign points to different

outcomes related to the issue for which the evidence of functions .
18. The system of claim 12 , wherein the valid assembler is to be built and / or for which the conflict is to be

code is assembleable into a valid executable . resolved ;
19. The system of claim 12 , wherein one or more of the determining which one or more members of the prob

inference modules are configured to receive additional rules lem / solution space has / have the most points ; and
from a user and / or from additional programmatic analysis . admitting to the enhanced fact database the one or more

20. A non - transitory computer readable storage medium members of the problem / solution space determined
tangibly storing a program that , when executed by a com to have the most points ; and
puting system including at least one processor , is configured wherein one or more of the inference modules imple
to disassemble an executable , by performing functionality ment (s) the soft heuristic in addition to hard rules for
comprising : fact generation , the hard rules and soft heuristic (s)

parsing the executable , and decoding possible instructions being encoded into declarative relations .
in the executable in connection with the parsing ;

20

25

30

