** latex pngs :PROPERTIES: :DATE: 2009-11-20 :END: $x \mapsto y$ *** Theorem :PROPERTIES: :DATE: 2009-11-20 :END: $|consts(t)| \leq sizes(t)$ - by induction on the structure of t - base cases are $t \in [true, false, 0]$: - $|consts(t)| = |[t]| = 1 = size(t)$ - inductive size - $t \in [succ(t_1), pred(t_1), iszero(t_1)]$: - $|consts(t)| = |consts(t_1)| = |[t]| \leq size(t_1) < size(t)$ - $t = if\, t_1 \, then \, t_2 \, else t_3$ - $|consts(t)| = |consts(t_1) \cup consts(t_1) \cup consts(t_1)|$ - $\leq |consts(t_1)| + |consts(t_1)| + |consts(t_1)|$ - $\leq size(t_1) + size(t_1) + size(t_1)$ - $< size(t)$